<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the inverse of the F probability distribution. </help:help-text> The F distribution is used for F tests in order to set the relation between two diffused data quantities.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the Fisher transformation for x and creates a function close to a normal distribution.</help:help-text></p>
<p class="Head3">Syntax</p>
<p class="Paragraph">FISHER(Number)</p>
<p class="Paragraph"><span class="T1">Number</span> is the value to be transformed.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the inverse of the Fisher transformation for x and creates a function close to a normal distribution. </help:help-text></p>
<p class="Head3">Syntax</p>
<p class="Paragraph">FISHERINV(Number)</p>
<p class="Paragraph"><span class="T1">Number</span> is the value that is to undergo reverse-transformation.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the result of an F test.</help:help-text></p>
<p class="Head3">Syntax</p>
<p class="Paragraph">FTEST(Data 1; Data 2)</p>
<p class="Paragraph"><span class="T1">Data 1</span> is the matrix of the first record.</p>
<p class="Paragraph"><span class="T1">Data 2</span> is the matrix of the second record.</p>
<p class="Head3">Example</p>
<p class="Paragraph">=FTEST(A1:A30; B1:B12) calculates whether the two data rows are different in their variance and returns the probability that both rows could have come from the same total population.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Calculates the values of an F distribution.</help:help-text></p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the inverse of the gamma cumulative distribution.</help:help-text> <text:s text:c="" xmlns:text="http://openoffice.org/2000/text"/>This function allows you to search for variables with different distribution.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the natural logarithm of the gamma function: G(x).</help:help-text></p>
<p class="Head3">Syntax</p>
<p class="Paragraph">GAMMALN(Number)</p>
<p class="Paragraph"><span class="T1">Number</span> is the value for which the natural logarithm of the of the Gamma function is to be calculated.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the probabilities of a gamma distribution.</help:help-text></p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the standard normal cumulative distribution.</help:help-text></p>
<p class="Head3">Syntax</p>
<p class="Paragraph">GAUSS(number)</p>
<p class="Paragraph"><span class="T1">Number</span> is the value for which the integral value of the normalized standard distribution is to be calculated.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the geometric mean of a sample.</help:help-text></p>
<p class="Head3">Syntax</p>
<p class="Paragraph">GEOMEAN(Number 1; Number 2; ...Number 30)</p>
<p class="Paragraph"><span class="T1">Number 1, Number 2,...Number 30</span> are numeric arguments that represent a random sample.</p>
<p class="Head3">Example</p>
<p class="Paragraph">If you enter the values 23, 46 and 69 in text boxes value 1, 2 and 3, the result displayed will be 41.79.</p>
<p class="Paragraph">GEOMEAN(23; 46; 69) = 41.79. The geometric mean value of this random sample is therefore 41.79.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the mean of an interior of a data set.</help:help-text></p>
<p class="Head3">Syntax</p>
<p class="Paragraph">TRIMMEAN(Data; Alpha)</p>
<p class="Paragraph"><span class="T1">Data</span> is the matrix of data in the random sample.</p>
<p class="Paragraph"><span class="T1">Alpha</span> is the percentage of the marginal data that will not be taken into consideration.</p>
<p class="Head3">Example</p>
<p class="Paragraph">=TRIMMEAN(A1:A50; 0,1) calculates the mean value of numbers in A1:A50, without taking into consideration the 5 percent of the values representing the highest values and the 5 percent of the values representing the lowest ones. The percentage numbers refer to the amount of the untrimmed mean value, not to the number of summands.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the two-tailed P value of a z test with standard distribution.</help:help-text></p>
<p class="Head3">Syntax</p>
<p class="Paragraph">ZTEST(Data; x; STD)</p>
<p class="Paragraph"><span class="T1">Data</span> is the matrix of the data.</p>
<p class="Paragraph"><span class="T1">X</span> is the value to be tested.</p>
<p class="Paragraph"><span class="T1">STD</span> (optional) is the standard deviation of the total population. If this argument is missing, the standard deviation of the random sample in question will be processed.</p>
<p class="Head3">Example</p>
<p class="Paragraph">=ZTEST(A1:A50; 12) yields the probability that value 12 belongs to the standard distribution of the total population of data in A1:A50.</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the harmonic mean of a data set.</help:help-text></p>
<p class="Head3">Syntax</p>
<p class="Paragraph">HARMEAN(Number 1; Number 2; ...Number 30)</p>
<p class="Paragraph"><span class="T1">Number 1,Number 2,...Number 30</span> are up to 30 arguments, that can be used to calculate the harmonic mean.</p>
<p class="Head3">Example</p>
<p class="Paragraph">If you enter the values 23, 46 and 69 in the text boxes number 1, 2 and 3 the result that is displayed will be 37.64.</p>
<p class="Paragraph">HARMEAN(23;46;69) = 37.64. The harmonic mean of this random sample is thus 37.64</p>
<p class="Paragraph"><help:help-text value="visible" xmlns:help="http://openoffice.org/2000/help">Returns the hypergeometric distribution.</help:help-text></p>
<p class="Head3">Syntax</p>
<p class="Paragraph">HYPGEOMDIST(X; N Random; M; N Total)</p>
<p class="Paragraph"><span class="T1">X</span> is the number of results achieved in the random sample.</p>
<p class="Paragraph"><span class="T1">N Random</span> is the size of the random sample.</p>
<p class="Paragraph"><span class="T1">M</span> is the number of possible results in the total population.</p>
<p class="Paragraph"><span class="T1">N Total</span> is the size of the total population.</p>
<p class="Head3">Example</p>
<p class="Paragraph">=HYPGEOMDIST(2; 2; 90; 100) yields 0.81. If 90 out of 100 pieces of buttered toast fall from the table and hit the floor with the buttered side first, then if I drop 2 pieces of buttered toast from the table the probability is 81%, that both will strike buttered side first.</p>